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S U M M A R Y  
Results are presented of a numerical study of the three-dimensional free convectional flow near a stagnation point of 
attachment on an isothermal surface when the Prandtl number is 0.72. The boundary layer flows that result are of both 
nodal and saddle point type. The results of the numerical integrations are presented graphically for various values of 
c = b/a, where b and a are the principal curvatures of the surface at the stagnation point. Two singularities are found to 
exist. 

1. Introduction 

When a fluid moves over a finite body there are points at which the fluid attaches itself'to the 
body and other points where the fluid leaves the body. The method used to describe the nature 
of these particular points is by way of the behaviour of the skin-friction lines at the surface 
of the body [1]. 

Lines on the body surface whose tangent at a point coincides in direction with the skin-friction 
vector at that point are called the skin-friction lines. The vortex lines on the body surface are 
everywhere orthogonal to the skin-friction lines except at points of attachment or separation 
at which both skin-friction and vorticity vanish : the latter positions are singular points of both 
differential equations defining the skin-friction and vortex lines, and are called stagnation 
points. By choosing a co-ordinate system Oxyz with origin at the singular point and Oz normal 
to the surface, the classification of such a point depends on the sign of the Jacobian, J = 6 (ex, ey)/ 
O(x, y) where #~=/~(~, ey) is the skin-friction vector in the plane Oxy. If J > 0  the point is a 
nodal point and if J < 0 it is a saddle point. 

Further, if the normal velocity near to the origin is towards z = 0 the stagnation point is one 
of attachment, while if the normal velocity is away from the surface it is a point of separation. 
It can be shown that, provided the velocity field is solenoidal, then depending on whether the 
two-dimensional divergence of~ is > 0 or < 0 the singular point is a stagnation point of attach- 
ment or separation respectively. 

The forced convectional flow at nodal and saddle points of attachment has been discussed 
by Howarth [-2] and Davey [3] respectively. The physical situation at which it is assumed these 
solutions are valid is indicated in figure 1, where N and S indicate geometrical nodal and 
saddle points respectively. The arrow shows the flow direction in order to have points of 
attachment. We note that the flow in the vicinity of these attachment points is described by a 
sixth-order system of ordinary differential equations which involves a parameter c : c > 0 cor- 
responds to nodal points of attachment and c < 0 to saddle points of attachment. 

The saddle point flows discussed by Davey are "terminal" solutions and the basic assumption 
that such flows are locally determinate have been verified for certain values of c < 0 by Banks 
[4] and also by Cooke and Robins [5]. It should be noted, however, that for c < - 0.43 Davey 
found that one of the flow velocities ceased to be unidirectional a n d  suggested that such 
solutions were physically unrealistic. This interpretation is consistent with the later findings in 
[-4] where it was found from a forward-integration calculation that for 0 > c > - 0.43 Davey's 
stagnation point saddle flows were recovered, but that for c < - 0.43 the skin-friction vanished 
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N L 

Figure 1. Typical nodal (N) and saddle (S) points. The arrow indicates the flow direction for forced flow and the 
direction of gravity for free convection flow. 

and a singularity occurred before the boundary layer reached S. 
The free convectional flow at a stagnation point of attachment on an isothermal surface has 

been examined by Poots [6] ; the governing equations for this situation comprise an eighth- 
order system, which involves the Prandtl number, a, in addition to the parameter c that de- 
scribes the local geometry of the surface. Poots provided numerical solutions for a = 0.72 and 
various positive values of c which correspond to nodal points of attachment. 

The purpose of the present paper is to extend the calculations of Poots to negative values of c 
corresponding to saddle points of attachment. The Prandtl number is again chosen to be 0.72. 

2. The boundary layer equations 

Poots [6] has shown that, by choosing a locally orthogonal set of co-ordinates Oxyz  at the 
isothermal body surface in such a way that the origin coincides with the stagnation point and 
the parametric curves x = constant, and y = constant on the surface coincide with the lines of 
curvature, the boundary layer equations can be written 

c~u Ou c~u c~2,u 
u ffxx + v ~y + w ~zz = g f l (T -T~o)ax  + v az ~ ,  (1) 

~v Ov Ov 02 v 
u ~x + v ~y + w ~z = g f l ( T - T ~ ) b y  + V-Oz ~ ,  (2) 

Ou ~v Ow 
~V + ~  + ~ z  = 0 '  (3) 

~3T QT ~3T ~32T 
Uffx-x + V~-y + W ~ z  = k c3z2 , (4) 

where (u, v, w) are the velocities in the directions (x, y, z) increasing respectively, T is the tempe- 
rature with T~ the temperature at infinity, 9 is the acceleration due to gravity, fl the coefficient 
of cubical expansion, k is the thermal diffusivity and v the kinematic viscosity. The two re- 
maining parameters a and b are the curvatures of the body surface measured in the planes y = 0 
and x = 0 respectively: because of the choice of axes a and b are the principal curvatures at 0. 
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The parameters a and b were taken to be non-negative by Poots so that the body is of nodal 
type at 0, and the solutions of the resulting equations found in [6] correspond to stagnation 
points which are nodal points of attachment. However, if one of a and b is negative, the body 
is of saddle type and it is to be assumed that certain solutions of the equations will correspond 
to saddle points of attachment. Clearly if both a and b are negative the body is again of nodal 
type but the flow is one of separation and is not considered here. 

Without loss of generality, we therefore take b to be negative and, in terms of the Grashof 
number G = fig ( T o -  T~)/a3 V2, where T O is the constant wall temperature, look for a solution 
by writing 

u =  va2xG�89 v =  va2yG~g'(Z),  w =  - v a G � 8 8  (5) 

T =  T~o + ( T o -  T~o)h(Z) , 

where Z = G -~ az. The continuity equation (3) is automatically satisfied by this choice and equa- 
tions (1), (2) and (4) yield 

f ' " + ( f + g ) f " - f ' 2 + h  -- O, 

g'" + ( f  + g ) g " - g ' 2  +ch = O, 

h " + a ( f + g ) h ' =  O, 

(6) 
(7) 
(8) 

where c = b/a, a = v/k is the Prandtl number and dashes imply differentiation with respect to Z. 
The non-dimensionalisation differs slightly from that of Poots to allow c to take positive and 
negative values. The problem is completely posed by adding the boundary conditions 

f(0) = f ' ( 0 )  = g(0)= g'(0) = 0 ,  h(0)= 1, (9) 

U' (Z )~O,  g ' (Z )~O,  h (Z)~O as Z ~ o o .  

As Poots points out, with c = 0  we recover the well-known two-dimensional problem by 
assuming g(Z) -O ,  while with c=  t and assuming f ( Z ) = g ( Z )  we recover the axi-symmetric 
problem. Since Poots assumed that, in the present notation, both a and b were positive he was 
able to restrict attention to cases when 0 < c < i by a possible change of axes. This is equivalent 
to noting that equations (6), (7) and (8) imply tha t  

f (c ,  Z ) =  c~g(c -1, c~Z) ,  g(c, Z ) =  c-~f(c -1, c~Z),  

h(c, Z ) =  h(c -1, c�88 Z) . (10) 

These relations give no additional solutions when applied to those provided by Poots, although 
in this study dual solutions in the range 0_<_ c < oo are shown to arise and relations (10) will be 
used to "reflect" the solutions from the range 1 < c < oo into the range 0 < c < 1 for convenience. 
It may be convenient at this stage to note that Poots gave numerical solutions to equations (6), 
(7) and (8) subject to (9) for values c = 0, 1 1 f6, ~, 96, 1 and a=0.72. 

In view of the boundary conditions in (9) as Z ~  o% it can be shown that for a # 1 and large Z 

f ~(51 - A2e-~~ + Be  -~ ' 

g"~ 62 - cA2 e -~~ + C e -~ , (11) 

h ~ A e  -~~ , 

where 0 =61 + 62 and 2-  ~ =a203 ( l - a ) .  For a =  1 analogous expressions can be obtained. 
Clearly we shall require 0 > 0 in order that the solutions satisfy the boundary conditions and 
this implies the normal flow at the edge of the boundary layer is towards Z = 0 .  Also they will 
be flows of attachment in the sense outlined in section 1 provided f " (O)+g"(O)> 0 and we 
anticipate what is to follow by noting that all the solutions found in this study satisfy this 
condition. 

A point of interest arises at this stage on comparison with the forced convection problem: 
it was found in [3] that for c < 0 the solutions were clearly not unique and a device was adopted 
for selecting what was assumed to be the physical solution. Equations (11) on the other hand 
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imply complete freedom from the latter sort of non-uniqueness. It is also clear from the leading 
terms of the asymptotic forms in (11) that for 0 < a < 1 the velocities u, v take opposite signs for 
large Z with c < 0, while for c > 0 they have the same sign. These properties are observed in all 
the numerical solutions found in this investigation. 

In the forced convection problem the boundary layer is driven by the outer flow and it is 
found that the characteristics of this flow provides physical arguments for expecting a lower 
negative bound to the values ofc below which no solutions exist. However, in the free convection 
situation there is no outer flow to this order, the driving mechanism varying across the boundary 
layer in a manner which is known only when the solution is known. Nevertheless one may, 
on physical grounds, expect a limiting value of c, say c*, below which no solutions exist. We 
may note other evidence for the existence of c* : if we assume c < 0 then with 7 = - c the analogue 
of (10) is 

f (7, Z) = 7�88 F(y, 7+ Z) , 9(7, Z) = 7+G(7, y+ Z) , 

h(7, Z) = H(7, 7 +Z),  

and equations (6), (7) and (8) become 

F" '+(F+G)F" -F 'Z+7-1H=O , 

G"'+(F+ G)G"- G '2 -  H = 0 ,  

H"+a(F+G)H'= O, 

where dashes now imply differentiation with respect to ~ = y + Z, and the boundary conditions 
are as in (9). However for ~ large, we may expect F=0(1/7) and the equations for G and H 
become 

G,,, +GG,,_G'Z_H =O, 

H"+aGH' = O, 

on neglecting F. These equations govem the steady flow at a point of separation and it appears 
to be generally accepted that they do not possess a solution. 

In view of this it was decided to look for numerical solutions of equations (6), (7) and (8) 
subject to (9) for c < 0, by continuously decreasing from c = 0 and hence to find the limit c* 
below which no solutions exist. 

The method used in the numerical integrations was the "shooting" method, whereby for 
o-= 0.72 and fixed e trial values o f f "  (0), g" (0), h' (0) are perturbed until the boundary conditions 
for large Z are satisfied. The outer boundary condition was imposed at Z = 20 for most values 
of c. A computer library procedure was used for the integrations which had an automatic 
change of step-length facility thus providing a check on the accuracy. 

3. Numerical results 

Because Poots had given solutions to equations (6), (7) and (8) subject to (9) with a = 0.72 for 
certain values of e > 0, the method adopted was to continue the tabulation o f f  (Z), 9 (Z), h (Z) 
to negative values of c for the same Prandtl number. Also, in view of the dual solutions found 
by Schofield and Davey [7] in forced convectional flow, the possibility of a dual solution 
existing at e = 0 was at the same time investigated. This was found and reported upon else- 
where [8] and its existence was used to approach further solutions for e < 0 and c > 0 along a 
different branch of the solution curve. 

The results of the numerical integrations are presented in graphical form. Figures 2 and 3 
" '0 '  h'(0) and f(o0),  9(o0) etc. with c. We have, show respectively the variation of f"(0) ,  9 t /, 

following Schofield and Davey, denoted the dual solutions by the subscript d for c <  i. As 
expected on physical grounds we find h (Z) ~ 0 for all flows. We note that the limit value c* = 
-0 .1559. . .  and its defining characteristic would appear to be the singularity that is suggested 
by the numerical results. Thus, as in the well-known Falkner-Skan flows, in the neighbourhood 
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Figure 2. Values of f "  (0), 9" (0), h' (0) for dual and non-dual solutions with cr = 0.72 and c* < c < 1. The broken lines 
show results found by Poots [6]. The dotted lines show results of dual solutions corresponding to c > 1 (see text for 
further explanation). 

of c* the solution varies with c like ( c -  c*) ~, and in particular 

f " ( o ) -  0 . 9 1 1 6 5 - 0 . 1 4 ( c - c * )  ~ , 

9" (0) = - 0.25533 + 0.47 ( c -  c*) ~ , (12) 

h' (0) = - 0 .32142-  0.13 ( c -  c*) ~ , 

where c *=  -0.1559. No special calculations were made to find very detailed behaviour near 
c*, although the calculations made were sufficient to have complete confidence in the existence 
of the singularity. By taking the positive sign of the square roots, as done in (12), we obtain 
non-dual saddle point flows, whereas by taking the negative sign we get the dual saddle point 
flows. 

We may note that the singularity in the Falkner-Skan problem found numerically by Hartree 
[9] has recently [10] been demonstrated mathematically to exist. There is no doubt that the 
methods used in [10] could be used in the present problem to verify the singular behaviour 
as c~c*,  and the latter's existence does suggest that for c <  c* there are no solutions. 

It should be noted that the dual solutions for c > 1 cannot be obtained from the dual solutions 
corresponding to c < 1 : they are distinct solutions in their own right. However, we can still 
confine attention to the range 0 < c < 1 by using the relations in (10), although the independent 
variable is r/= c -~ Z, i.e. the non-dimensionalisation of Grashof  number and normal distance 
from the wall is based on b instead of a. As in [7], when (fu, ga, ha) corresponding to c > 1 is 
transformed into c <  1 using equations (10), we denote the solution by (,g, , f ,  ,h). 

Further examination of the numerical results suggests that there is a second singularity 
present as c ~ 0 +  along the transformed dual solutions. The singularity manifests itself by 
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Figure 3. Flow details at the edge of the boundary layer. (See caption to figure 2 for notation etc.) 
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Figure 4. Velocity profiles f ' (Z )  and.g'(t/) for various values of c shown. (See caption to figure 2 for notation etc.) 
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way of , f "  (0), ,g" (0), ,h'(0) behaving like c ~ and also by , f '  (r/), ,g' (t/), ,h (t/) decaying for t/ 
large progressively more slowly as c--, 0 +.  Because of the large ranges of integration that would 
clearly be necessary for very small values of c results are presented down to c = 0.04 only. This 
singularity as c--,0 + is somewhat akin to that found by Stewartson [11] in the lower branch 
solutions of the Falkner-Skan equation as f l ~ 0 - .  We note he was able to show analytically 
that this bifurcation point did not give rise to yet further solutions but we have not proved this 
for the present problem. 

It would appear that in all probability this second singularity will also exist in the forced 
convection problem considered in [7] ; however the prime importance of the latter work was 
to demonstrate the existence of the dual solutions and it seems the authors did not integrate 
the relevant equations for sufficiently small c to appreciate the existence of the singularity. It 
does mean nevertheless that the dashed curve in figure 1 of [7] representing the variation of 

\ 
\ l  

/ 

\\ 

I0 12 14 16 10 2C) / 

' 0 4  

/ 
/ 

/ 
Figure 5. Velocity profiles g' (Z) and.f '  (r/) for various values of c shown. (See caption to figure 2 for notation etc.) 
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, f " ( 0 )  with c does not describe the correct behaviour as c - o 0 + .  
Near  z = 0 

w ,-~ - v a 3 G ~ ( f "  (0)+ g" (0)) z 2 

and since f "  (0)+ g" (0) > 0 in all solutions presented, they are flows of attachment as expected. 
Further, since 

J = tO(e:,, ey)/tO(x, y )=  vZa6G~f"(O)g"(O) 

and f "  (0) > 0 for all c > c*, it follows that J takes the same sign as g" (0). Hence saddle point 
flows result from non-dual solutions when 0 > e > c*, and from dual solutions when c* < c < 0.38. 
Nodal  point flows result from dual solutions when c > 0.38 in addition to those catalogued by 
Poots. 

Figures 4, 5 and 6 give the velocity profiles and the temperature variation for the various 
values of e indicated. Also shown for comparison are the axisymmetric solution (c = 1) and the 
two-dimensional solution (c = 0) in each case. Even a glance at these graphs reveals significant 
variations with c when compared with the variation of the non-dual nodal solutions : consider 
for example the non-dual variations o f f '  (Z), g' (Z), h(Z) for  the range c*_< c <  0. 

\ \ 

3 \ 

2 4 6 8 IO 12 i4 [6 18 20 

Figure 6. Temperature profiles h (Z) and,h (~/) for various values of c shown. (See caption to figure 2 for notation etc.) 

4. Discussion 

The existence of the singularity at c = c* is not without interest. It may reasonably be interpreted 
as the inability of the boundary layer to exist at values of c < c* for given a, and that if indeed 
one proceeded with a three-dimensional boundary-layer  calculation for free convectional flow 
past a body shaped as in figure 1, where the arrow now indicates the direction of gravity, 
To < T~ and c < c* at S, then one may expect to find that the boundary layer breaks down 
between N and S due to a singularity. Also the implication is that at the point of breakdown 
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both components of the skin friction and the heat transfer are non-zero. This type of behaviour 
has been suggested by Stewartson [ 12] in a not unrelated problem, although in the special case 
considered by Merkin [13] and Buckmaster [14] the only singularity found coincided with the 
position of zero skin-friction. 

A problem that is relevant here concerns the two-dimensional free convectional flow about 
a heated circular cylinder. Switzer [15] has considered this situation in some detail but from 
the results presented no conclusion can be drawn about the existence of a singularity-presum- 
ably the assumption is that the fluid from either side of the cylinder collides at the upper 
generator and erupts into a plume. Indeed, one can prove (see Appendix) that, providing there 
is no singularity, then collision and consequent eruption must occur. However, we note that in 
[ 15], following Saville and Churchill [16], the meridional velocity component is written with 
an explicit dependence on the meridional co-ordinate in such a way that the boundary layer 
velocity vanishes at the lower and upper generator, i.e. an end boundary condition is imposed 
on a parabolic system of equations which is inconsistent. So although the method proposed in 
[16] is very suitable for some regions it would appear that some difficulty will be encountered 
near the upper generator. 

S 

(o )  

_k 

(b) 
Figure 7. Typical non-symmetric body which may give rise to a free convection flow (a) with two nodal points and 
one saddle point of attachment, or (b) with one nodal point of attachment only. 
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If one adopts the view that there is no breakdown of the boundary layer in such situations, 
and the appropriate boundary layer equations do not suggest otherwise, then for non-sym- 
metrical bodies extreme care would be required to obtain physically meaningful results in any 
calculations. For example for symmetrical bodies like the circular cylinder or that illustrated 
in figure 1 (with c < c* at S*) the point of collision will be in the plane of symmetry, although 
for three-dimensional bodies like that illustrated in figure 7 there is the possibility of (i) a flow 
existihg with a collision occurring (as in figure 7 (a)) at a point to be determined, or (ii) a flow 
with only one nodal point of attachment as sketched in figure 7(b). 

We may note here that in the forced problem of Davey [3] the assumption of three stagnation 
points for the body indicated in figure 1 leads to separation with a singularity present [4], 
when c < - 0.43 at S. The suggestion made by Davey is that the outer flow in the region of S 
changes drastically as c changes from - 0.43 + 0 to - 0.43 - 0, so that the one saddle point flow 
at S is replaced by a nodal point flow at S which is flanked by two saddle point flows. This ap- 
pears to be a very reasonable picture and is certainly not inconsistent with the conventional 
ideas on two-dimensional laminar boundary layer separation with its associated singularity--it 
is argued that the particular outer flow used is not correct and that it will be modified in such 
a way that the singularity is eliminated. 

One of the difficulties in the free convection situation is that there is no outer flow to the 
appropriate order to which one could appeal for a suitable modification. 

The sort of boundary layer collision that is envisaged above also occurs at the equator of a 
rotating sphere (Howarth [17] ), although the flow in the eruption region has yet to be resolved 
even for this symmetrical situation [18]. We merely note that suction, injection, or modification 
of the geometry at one hemisphere will destroy the symmetry of the interaction (providing 
separation has not occurred) and the problem is presumably more difficult since even the point 
of collision will have to be determined. 

We have no physical interpretation for the dual solutions. It is possible that certain of such 
solutions describe the non-symmetric collisions discussed above; although even if they do 
they may only be of theoretical interest in view of the ideas advanced in [10] where it is con- 
jectured that a bifurcation point such as that at c* is a margin of stability between stable and 
unstable regimes. 

Finally, there is an interesting and immediate consequence of the singularity at c* which can 
be interpreted in terms of a change in the Prandtl number. For, by the methods in [10], a 
singularity implies that if we denote the solution at c = c* by f* ,  g*, h* it follows that the homo- 
geneous equations 

F"' +(f* +g*)F" +(F +G)f*"-2f* 'F'  + H = O, 

G"'+(f*+g*)G"+(F+G)g*"-Zg*'G'+c*H = 0 ,  (13) 

H'" + o-(F + G)h*' + a(f* + g*)H' = O, 

satisfying the homogeneous boundary conditions 

F(0) = F ' (0 )=  G(0)= G'(0)= H(0) = 0 ,  (14) 
F'(Z)~O, G'(Z)~O, H ( Z ) + O a s Z ~  

possess a non-trivial solution. Full details of the method are available in [10] and it suffices 
to remark that the "normalising" factor for this homogeneous solution is obtained at the next 
order terms. However a consequence of this is that by perturbing the solution about c = c*, 
o-=0.72 with respect to the Prandtl number, by writing o-=0.72+ 6a, the existence of the 
solution to the above homogeneous problem implies that the variations off ,  g, h with o- at c* 
are of the form 

f = f * + ( 6 a y ~ + . . . ,  g = g * + ( a a F F +  .... h= h*+(ao-yO+ . . . .  (15) 

* It is assumed that if c > c* at S then the saddle point flows of w will be recovered. 
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where 0 < p < 1 and q~, F, O satisfy the same homogeneous problem as F, G, H respectively 
in (13) and (14). Different letters have been used for the perturbation terms because the "nor- 
malising" factor, obtained at a later stage of the expansion in (15), will be different. The sign 
of 6a will also be obtained when the "normalising" factor is known. In all probability p = 1 and 
so if the factor is real we must take 6a > 0 whereas if it is totally complex we must take 6a < 0 : 
in either case the bifurcation point is moved but still exists. 

For  reasons that follow, it is suggested that the "normalising" factor in (15) is real so that c* 
is a monotonic decreasing function of a. The evidence for this concerns the behaviour at the 
two limiting values a ~  oo and a--*0. For  a >> 1 the method of matched asymptotic expansions 
indicates that a viscous layer near the body exists such that 

f ( Z )  ~ )~-~fo (4) + . . . ,  

g (z) z - % ( O  + . . . .  

h (Z) ,-~ h o ( 0 + . . . ,  

where ~ = Z �88 Z, Z = a(1 + c) and fo, ho are known from the two-dimensional problem (details 
are given in [8]), and it is conjectured from this result that for a >> 1, the value of c, beyond 
which no solutions exist, tends to - 1 .  Further, for 0<  a ~  1, a similar analysis leads to an 
inviscid layer such that 

f .,, a -  ~ Fo (tl) + . . . .  

g .,~ a--~ Go(tl)+ . . . .  

h,,~ Ho(tl)+... , 

where t / =  a ~ Z and Fo, Go, H0, satisfy 

(Fo + Go)F~-  F'o2 + Ho = O, 

(Fo+C ~ "  ~'2+cHo = O, ~ 0 !  " ' 0  - -  "~ 

H; +(Fo +Go)H'o = O, 

subject to 

Fo (0) = Go (0) = O, Ho (13) = 1, 

F ; ( ~ ) ~ 0 ,  G ; ( ~ ) ~ 0 ,  Ho(~)-*0 as t / ~ c ~ .  

However, a consequence is that 

F~(0)---1, G~(0)=c ~, 

which again leads to the obvious conjecture that as a ~ 0  there are no solutions for c<  0. 

Appendix 

The purpose here is to show that the boundary layers that start at the lower generator and move 
up along both sides of a heated horizontal circular cylinder do collide at the upper generator, 
provided there is no singularity in the boundary layer equations. The proof offered here follows 
the method suggested by Howarth [-17] where the boundary layers of a rotating sphere are 
shown to collide. 

The boundary layer equations for free convectional flow over a circular cylinder are (see 
[-15] for example) 

c~u c~u c3 2 u 
u ~  + V~y = O sin0 + - -  (A.1) @2 
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90  00  02 0 
= tr - 1 -  (A.2) u-~ff + V~y 3y z 

where 0 is the angle subtended at the axis of the cylinder and measured from the lower generator, 
y is the distance measured normal to the surface of the cylinder, (u, v) are velocities in the direc- 
tions (0, y) increasing and O is a measure of the temperature. The boundary conditions for an 
isothermal surface are 

u = v = 0 ,  O = 1  at y = 0 ,  (A.3) 
u ~ 0 ,  O ~ 0  as y ~ o o .  

However, if at the edge of the boundary layer we denote the normal velocity by v~ = v~ (0) 
then (A.1) and (A.2) imply in view of (A.3) that 

32 u 3u 
3y 2 V ~ y y =  - O s i n 0 ,  

3 2 0  3 0  
- -  ~ 0 ,  Oy 2 aV~ Oy 

It then follows that 

O = A (0) e ~yv~ , 

A (0). sin 0 
u = av~(1-a)e~YV~ +B(0)er~'~ ' 

for large y and ~r # 1. Hence in order to satisfy the boundary conditions in (A.3) we require 
v ~  < 0, i.e. in-flow. It therefore follows that the boundary layers collide. 
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